PadicoTM

A Communication Framework for Grid

- Component-based communication framework
 - Dynamically composable building blocks
 - Flexible and extensible
- Configurable protocol stack
 - “Best-effort” automatic selection for most cases
 - User-configurable for complex topologies
- Enables all combinations
 - Any middleware over any network
- Supports wide range of middleware systems
 - CORBA: omniORB, MICO
 - MPI: MPICH, YAMPI
 - SOAP (qSOAP), DSM (Mome), HLA, JXTA, JVM, ...
- Supports grid networking technologies
 - High performance networks – through Madeleine: Myrinet, Quadrics QsNet, Infiniband, SCI
 - Wide area networks – firewalls traversal, parallel streams, ...
- Usable through various API
 - Virtual sockets – for legacy code
 - Virtual Madeleine – for efficient MPICH-Mad over PadicoTM
- Pluggable communication methods
 - Firewall traversal: TCP splicing, SSH tunnel
 - Compression: ZIP, LZO, adaptive ZIP (AuOC)
 - Parallel streams: for high bandwidth on WAN
 - Security: TLS, SSL, SSH tunnel
 - Message routing

MPICH/Madeleine

MPI for Clusters of Clusters

- MPI implementation for clusters of clusters
 - Derived from MPICH
 - Supports heterogeneous networks
 - Multithreaded communication engine
 - Very high performance
 - Usable over PadicoTM or directly over µPM2
- Supports grid networking technologies
 - High performance networks through Madeleine: Myrinet, Quadrics QsNet, Infiniband, SCI
 - Deployment tools tested over Grid'5000 allowing to run applications on multi-sites clusters

Software available

- Download software from:
 - PadicoTM: http://runtime.futurs.inria.fr/PadicoTM/
 - MPICH/Madeleine: http://runtime.futurs.inria.fr/mpi/

High performance

- Reach 96% of the hardware bandwidth on Myrinet, Infiniband or Quadrics
- Bandwidth actually available for MPI and CORBA
- Low latency CORBA and MPI (< 9 usec.)

Project RUNTIME

Efficient runtime systems for grids

http://runtime.futurs.inria.fr/